All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress

نویسندگان

  • Paulina Tokarz
  • Agnieszka Wanda Piastowska-Ciesielska
  • Kai Kaarniranta
  • Janusz Blasiak
چکیده

Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids-which regulates cell proliferation, differentiation, and the visual cycle in the retina-was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر غلظت‌های مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلول‌های بنیادی فولیکول‌ موی موش سوری

Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...

متن کامل

Tocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans

Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...

متن کامل

MEK/ERK pathway mediates UVB-induced AQP1 downregulation and water permeability impairment in human retinal pigment epithelial cells.

Aquaporins (AQPs) are a family of 13 small ( approximately 30 kDa/monomer), hydrophobic, integral membrane proteins. AQPs are expressed in various epithelial and endothelial cells involved in fluid transport. Here, we demonstrated for the first time that AQP1 is expressed in cultured human retinal pigment epithelial (RPE) cells (ARPE-19 cell line). Ultraviolet radiation (UVB) and H2O2, two majo...

متن کامل

Tocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans

Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...

متن کامل

Alteration of OGG1, MYH and MTH1 genes expression in relapsing-remitting multiple sclerosis patients

Introduction: Previous studies revealed that oxidative stress is elevated in multiple sclerosis (MS). It can harm to biological macromolecules such as DNA. However, the molecular mechanism in protection of genetic information from DNA damages is not clear in MS disease. In this study the expression level of some important genes of OGG1 and MYH involved in base excision repair pathway and, MTH1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016